A Project Presentation on

Provisioning of QoS to Multimedia Traffic in Cellular Networks

Rakesh Neela

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

Introduction

Motivation

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

- 1. In Wireless networks the most critical components are data compression, quality-of-service, communication protocols and effective digital management. We are providing QoS to cellular networks.
- **2. Quality-of-service** is described as well-defined and controllable behavior of a system according to quantitatively measurable parameters.

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

Literature Survey

Multimedia Applications Bandwidth Model Time Duration Model

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

Literature Survey- Multimedia Application

The multimedia traffic modeling process and the role of the proposed framework in this process.

Fig. Multimedia Traffic Modeling [2]

Overview

Introduction Literature Survey Multimedia application Bandwidth Model Time duration Model Proposed Work Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Bandwidth Reservation Model

Uniform and Bandwidth-Based Reservation Model:

In this model, it is assumed that user movement patterns are unknown, and the same amount of bandwidth is reserved in all neighboring cells. In addition, the amount of bandwidth to reserve is calculated based on the requested bandwidth of existing Class I connections. Specifically, the *largest of all* of the requested bandwidths, is used as the amount of bandwidth to reserve.

Movement- and Bandwidth-Based Reservation Model:

In this model, it is assumed that user movement patterns are known, and different amounts of bandwidth are reserved in different neighboring cells based on user movement patterns. *Highest Directionality is given connection.*

Movement- and Number-of-Connections-Based Reservation Model:

The amount of bandwidth to reserve is calculated as a *function* of the number of existing Class I connections instead of the requested bandwidths.

Overview

Introduction Literature Survey Multimedia application Bandwidth Model Time duration Model Proposed Work Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Distribution functions used in framework

Continuous distributions	Cumulative distribution function (CDF)	Parameters to define
Exponential	$F(x) = 1 - e^{\frac{-x}{p}}$	 Mean (μ)
Weibull	$F(x) = 1 - e^{-\frac{(2)^2}{2}}$	• Parameter θ
Pareto	$F(x) = 1 - \left(\frac{m}{x}\right)^x$	 Parameter k Parameter α. Minimum value m
Normal	$F(x) = \int_{-\infty}^{\infty} x f(x) \mathrm{d}x, \text{ where } f(x) = \mathrm{e}^{\frac{-4\varepsilon - \mu^2}{2\omega^2}}$	 Mean, μ Variance, σ²
Lognormal	$F(x) = \Phi(\ln(x))$, where Φ is the CDF of the normal distribution	 Mean, μ Variance, σ²
Discrete distributions Poisson	$F(x) = \sum_{i=0}^{x} \frac{e^{-\mu} \mu^{i}}{i!}$	Mean, µ
Geometric	$F(x) = \sum_{i=0}^{x} p(1-p)^{i-1}$	Mean = 1/p

Fig. Mathematical Distribution functions [2, 10]

Overview

Introduction Literature Survey Multimedia application Bandwidth Model Time duration Model Proposed Work Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Proposed Work

CAC Architecture Bandwidth Request Model QoS Allocation Model Connection Duration Model CAC System

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

Variable Bit Rate Traffic

What is?

Compression Schemes

Where it is used?

Multimedia Applications

Why this is used?

Characteristics of Application (LRD and SRD properties).

Who are included?

Video Streaming, VOIP and Online gaming, often demand seamless real time delivery.

When it is used?

For better understanding of traffic.

How it is used?

It is used as a stochastic process (Numerical Variable).

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model OoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Traffic Characterization

Overview

Introduction Literature Survey **Proposed Work** •CAC Architecture Multimedia Traffic Bandwidth Request Model QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

1. Observation

2. Classification

Applic.	Traffic	Bandwidth	Average
Group	Class	Requirement	Bandwidth
			Requirement
			(b_i)
1	Ι	30 Kbps	
		(CBR)	
2	I	256 Kbps	
		(CBR)	
3	I	1-6 Mbps (average)	3 Mbps
		2.5-9 Mbps (peak)	
	1	(VBR)	
4	П	5-20 Kbps	10 Kbps
		(UBR)	-
5	II	64-512 Kbps	256 Kbps
		(UBR)	
6	П	1-10 Mbps	5 Mbps
		(UBR)	

3. Analysis Bandwidth Requirement

It is found that bandwidth requirement follows Rayleigh distribution.

$$f(x) = \begin{cases} \frac{x}{\sigma^2} e^{\frac{-x^2}{2\sigma^2}} & x \ge 0\\ 0 & otherwise \end{cases}$$

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model •QoS Allocation Model Connection Duration Model CAC System **Bandwidth Model** Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

4. Proposed Function

The random variable B_{req} is said to be distributed with parameter B_{min} : Minimum Bandwidth requested by the user. B_{max} : Maximum bandwidth requested by the user.

 B_{req} : Bandwidth requested by the user.

Case 1: If $B_{req} \leq B_{min}$ then $B_{req} = 0$;

$$f(B_{req}) = \begin{cases} \frac{B_{req}}{\sigma^2} e^{\frac{-B_{req}^2}{2\sigma^2}} & B_{req} = 0 \end{cases}$$

So, $f(B_{req}) = 0$

Case 2: If $B_{min} \leq B_{req} \leq B_{max}$;

$$f(B_{req}) = \begin{cases} \frac{B_{req}}{\sigma^2} e^{\frac{-B_{req}^2}{2\sigma^2}} & B_{req} > 0 \end{cases}$$

Case 3: If Breq > Bmax

$$f(B_{req}) = \begin{cases} \frac{B_{req}}{\sigma^2} e^{\frac{-B_{req}^2}{2\sigma^2}} & B_{req} = 0 \\ So, f(B_{req}) = 0 \end{cases}$$

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model •QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

6. Performance Evaluation

Less number	r of Samples	Large numbe	er of Samples
10,0	000	10,00	0,000
Preci	ision	Prec	ision
Case 1: Small (5)	Case 3: Large (10)	Case 2: Small (5)	Case 4: Large (10)

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

7. Verification Random Number Generation

By Inverse transform Sampling method, we obtain random number generation is obtained efficiently from the distribution. We use the U and σ as parameters to obtain the random numbers.

Steps to obtain random number generation:-

- 1. Firstly, generate the distribution function U. $U \sim U(0, 1) \sim f(B_{req})$.
- 2. For generating random numbers for B_{req}. We obtain it by

 $B_{req} = \sigma * \sqrt{(-2\log(1-U))}$

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model OoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Provisioning of QoS to Multimedia Traffic in Cellular Networks

8. Further Investigations

Average Bandwidth Requirement (Bavg):

The average bandwidth requirement B_{avg} of the connection which is defined as mean of the distribution:

$$\mu = \sigma^k 2^{\frac{k}{2}} T (1 + \frac{k}{2})$$
$$\mu = \sigma \sqrt{\frac{\pi}{2}}$$

Where k is the number of repetitions.

Where as the σ simulation parameter which is defined as follows:

$$\sigma = \sqrt{\frac{1}{2N} \sum_{i=1}^{N} x_i^2}$$

Where N is total number of samples.

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model •OoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Traffic Cla	ss : Real	Time Traffic (Adaptive)
Parameter	Values	Description
B _{min}	1 Mbps	Minimum Bandwidth requested by the user
B _{max}	6 Mbps	Maximum Bandwidth requested by the user
σ	2.677069	Simulation parameter
Bavg	3.355884	Average Bandwidth Requirement

Table L. Annliastion Crown 2

Table 2: Application Group 3

Traffic Cla	ss : Rea	l Time Traffic (Adaptive)
Parameter	Values	Description
B _{min}	2560 kbps	Minimum Bandwidth requested by the user.
B_{max}	9216 kbps	Maximum Bandwidth requested by the user.
σ	4379.583 984	Simulation parameter
Bavg	5490.098 145 kbps	Average Bandwidth Requirement
Example: V	ideo-on-den	land

Overview

Introduction Literature Survey **Proposed Work** CAC Architecture Multimedia Traffic Bandwidth Request Model OoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Fig 1. Bandwidth Requested by the user vs. Frequency distribution of theoretical and simulation results of Table 1.

Fig.2. Bandwidth Requested vs. Frequency distribution of theoretical and simulation results of Table 2.

Provisioning of QoS to Multimedia Traffic in Cellular Networks

1. Observation

2. Classification

Application	Description
Movies-on- Demand	Customers can select and play movies with full VCR capabilities.
Interactive Video Games	Customers can play downloadable computer games without having to buy a physical copy of the game
Interactive News Television	Newscasts tailored to customer tastes with the ability to see more detail on selected stories. Interactive selection and retrieval.
Catalog Browsing	Customers examine and purchase commercial products.
Distance Leaming	Customers subscribe to courses being taught at remote sites. Student tailor courses to individual preferences and time constraints.
Interactive Advertising	Customers respond to advertiser surveys and are rewarded with free services and samples.

3. Analysis

QoS Allocation

It is found that bandwidth requirement follows Geometric distribution. If $p_k = pq^{k-1}$, k = 1, 2, 3, q = 1-p, then

$$G_X(s) = \frac{ps}{1-qs} \text{ if } |s| < q^{-1}$$

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

4. Proposed Function

Let us Consider a random variable B_{alloc} (Bandwidth requested i.e., a discrete Random variable taking non negative values). It is written as follows:

p: Value generated from pseudo random numbers from the systemq:Value generated from pseudo random numbers from the system

(q=1-p)B_{min}: Minimum bandwidth requested for the user B_{max}: Maximum bandwidth values is acceptable for the connection B_{req}:Bandwidth requested by the user B_{alloc}: Bandwidth allocated by the system

> Case 1: If $B_{alloc} < B_{min}$ then $B_{alloc} = 0$ and $G_{QoS}(B_{alloc}) = 0$ Case 2: If $B_{min} \le B_{req} \le B_{max}$ and if $|B_{alloc}| < q^{-1}$ then $B_{alloc} = B_{req}$ and $G_{QoS}(B_{alloc}) = \frac{pB_{alloc}}{1-qB_{alloc}}$ Case 3: If $B_{max} < B_{req} < \infty$ and if $|B_{req}| < q^{-1}$ then $B_{alloc} = B_{req}$ and $G_{QoS}(B_{alloc}) = \frac{pB_{max}}{1-qB_{max}}$

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model •QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

QoS Allocation Model

5. Results

6. Performance Evaluation

Simulation Parameters

Parameter	Values	Description
р	0-1	Pseudo-random value generated by the system
q	0-1 (q=1-p)	Pseudo-random value generated by the system
Bmin	1 Mbps	Minimum Bandwidth which is required for the connection.
Britan	6 Mbps	Bandwidth values which are above the acceptable condition Bayz.
Bave	3 Mbps	Maximum Bandwidth value which is accepted by the connection.
Balles	Random Variable	Requested Bandwidth allocated to the connection

5

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Provisioning of QoS to Multimedia Traffic in Cellular Networks

2

з

Offered Bandwidth(in Mbps)

7. Verification Uniqueness Theorem

If X and Y have G_X and G_Y respectively, then $G_X(s) = G_Y(s)$ for all s iff P(X=k) = P(Y=k) for k=0, 1, i.e. if and only if X and Y have the same probability distribution.

Overview

Introduction Literature Survey **Proposed Work** CAC Architecture Multimedia Traffic Bandwidth Request Model QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

Provisioning of QoS to Multimedia Traffic in Cellular Networks

Provisioning of QoS to Multimedia Traffic in Cellular Networks

Connection Duration Model

1. Observation

2. Classification

Applic.	Traffic	Connection	Average	Example
Group	Class	Duration	Connection	
			Duration	
			(t_i)	
1	Ι	1 - 10 m	3 minutes	Voice Service
				& Audio-phone
2	Ι	1 - 30 m	5 minutes	Video-phone &
				Video-conference
3	I	5 m - 5 h	10 minutes	Interact. Multimedia
				& Video on Demand
4	П	10 - 120 s	30 seconds	E-mail, Paging
				& Fax
5	Π	30 s - 10 h	3 minutes	Remote Login &
				Data on Demand
6	П	30 s - 20 m	2 minutes	File Transfer &
				Retrieval Service

Overview

Introduction Literature Survey Proposed Work CAC Architecture Multimedia Traffic Bandwidth Request Model QoS Allocation Model Connection Duration Model CAC System Analysis of Application groups Results Conclusion and **Future Works** Dissertation References

3. Analysis Connection Duration

It is observed that connection duration follows Poisson distribution.

$$f(x) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Analysis of Application Groups

Real Time Application Group (Interactive Services and Video on Demand)

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

Analysis of Traffic

Table 1: Application Group 1

Parameter	Values	Description
B _{req}	30 Kbps	Bandwidth Request for CBR Traffic
σ	0.5	Simulation parameter
$f(B_{\text{req}})$	0-1	Uniform distribution values

Time Duration Model

Table 3: Application Group 3

Parameter	Values	Description
B _{min}	1 Mbps (Average)	Minimum Bandwidth requested by the user
B _{max}	6 Mbps (Average)	Maximum Bandwidth requested by the user
Σ	0.5	Simulation parameter
Breq	Random generation	Bandwidth generated by the system
$f(B_{req})$	0-1	Uniform distribution values

Time Duration & Bandwidth Model

Table 2: Application (Group 2
------------------------	---------

ndwidth Requirement CBR Traffic
CBR Traffic
nulation parameter
iform distribution ues

Time Duration Bandwidth Model Model

Table 4: Application Group 3

Parameter	Values	Description	
B _{min}	2.5 Mbps (peak)	Minimum Bandwidth requested by the user.	
B _{max}	9 Mbps (peak)	Maximum Bandwidth requested by the user.	
B _{req}	Random generation	Bandwidth generated by the system	
σ	0.5	Simulation parameter	
$f(B_{req})$	0-1	Uniform distribution values	

Time Duration & Bandwidth Model

Overview

Introduction Literature Survey Proposed Work Bandwidth Model Analysis of Application groups Results Conclusion and Future Works Dissertation References

Results

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

- Call arrival process for new calls and handoff calls are all *Poisson process*.
- Channel holding times for new calls and handoff calls are *exponentially distributed*.
- Both the process depends upon the cell residence time distribution. It is to show how call-blocking probabilities can be approximated when the *channel holding times* for new calls and handoff calls have different averages

Overview

Introduction Literature Survey Proposed Work Bandwidth Model Analysis of Application groups Results Conclusion and Future Works Dissertation References

Results for CAC

Call Blocking

The CAC takes offered bandwidth as input and call blocking probability as output.

Call Dropping

The CAC takes offered bandwidth as input and call dropping probability as output.

Parameter	Values	Description
N	10 Cells	Number of cells in the system
P _{HD}	0.5	Handoff dropping rate
P _{NB}	0.5	Call blocking rate
thres_up1	1.0	Upper threshold for dropping probability
thres_down1	0.5	Lower threshold for dropping probability
thres_up2	1.0	Upper threshold for reserved pool utilization
thres_down2	0.5	Lower threshold for reserved pool utilization
λн	0.01sec ⁻¹	Handoff call arrival rate
λи	0-10 calls/sec	New call arrival rate.

Overview

Introduction Literature Survey Proposed Work Bandwidth Model Analysis of Application groups Results Conclusion and Future Works Dissertation References

Conclusion and Future Works

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

□ To end of my work I have proposed

- 1. An Appropriate CAC System
- 2. Bandwidth Request Model
- 3. QoS Allocation Model

Considering Real-time Traffic Application Group 3 such as Interactive multimedia and Video on Demand applications.

 $\hfill \Box$ In future, I would like to extend my work by using other

- 1. Application groups such as real time and non real time traffic.
- 2. Call admission control techniques like prioritizing the calls.

Overview

Introduction Literature Survey Proposed Work Bandwidth Model Analysis of Application groups Results Conclusion and Future Works Dissertation References

Thesis Dissertation

- N. Rakesh and Hemanta Kumar Pati, "Characteristic Function for Variable-Bit-Rate Multimedia QoS", To appear in Springers' Advances in Intelligent Systems and Computing, ICCD-2014, April 2014. (in Press)
- 2. N. Rakesh and Hemanta Kumar Pati, "Characteristic Function for Variable-Bit-Rate Multimedia QoS", Selected for Inder Sciences' International Journal of Grid and Utility Computing.
- 3. N. Rakesh and Hemanta Kumar Pati, "Bandwidth modeling for Multimedia traffic in cellular networks", Communicating to Elseivers' Journal on Simulation Modeling Practice and Theory.

Overview

Introduction Literature Survey Proposed Work Bandwidth Model Analysis of Application groups Results Conclusion and Future Works Dissertation References

References - I

[1] Carlos Oliveira, Jaime Bae Kim and Tatsuya Suda, "An Adaptive Bandwidth Reservation Scheme for High-Speed Multimedia Wireless Networks", IEEE JSAC, Vol. 16, No. 6, pp. 858-874, Aug. 1998.

[2] http://www.am.qub.ac.uk/users/g.gribakin/sor/Chap3.pdf

[3] Savera Tanwir and Harry Perros, "A Survey of VBR Video Traffic Models", IEEE Communications Surveys & Tutorials, Vol. 15, No. 4, pp. 1778-1802, 4th Qtr, 2013.

[4] Ian F. Akyildiz, Tommaso Melodia, and Kaushik R. Chowdury, "A Wireless Multimedia Sensor Networks: A Survey", IEEE Wireless Communications, Vol. 14, Issue 6, pp. 32-39, Dec. 2007.

[5] Jenq-Neng Hwang, "Multimedia Networking: From Theory to Practice", Cambridge University Edition, 2009.

[6] Zafer Sahinoglu and Sirin Tekinay, "On Multimedia Networks: Self-Similarity Traffic and Network Perfomance", IEEE Communication Magazine, pp-48-52, Jan. 1999.

[7] Shashank Khanvilkar, Faisal Bashir, Dan Schonfeld, and Ashfaq Khokhar, "Multimedia Networks and Communication", <u>http://multimedia.ece.uic.edu/04-8.pdf</u>

[8] Athanasios Papoulis, S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Process", Tata Mc-Grawhill, 4th Edition, 2009.

[9] E. Cerqueira, L. Veloso, M. Curado, E. Monteiro and P. Mendes, "QoS Mapping and Adaptation Control for Multi-user Sessions over Heterogeneous Wireless Networks", MobiMedia, August 2007.

Overview

Introduction Literature Survey Proposed Work Bandwidth Model Analysis of Application groups Results Conclusion and Future Works Dissertation References

References-II

- [10] Jitae Shin, Jin-Gyeong Kim, JongWon Kim, D. C. Lee and C.C. Jay Kuo, "Aggregated QoS Mapping Framework for Relative Service Differentiation-Aware Video Streaming", Packet Video Workshop, 2001.
- [11] E.Cerqueria, L. Veloso, A. Neto and M. Curado, "A Unifying Architecture for Publish-Subscribe Services in the Next Generation IP Networks", IEEE Global Telecommunications Conference, Dec. 2006, pp. 1-5.
- [12] Maurizio Andronico, Salvatore Casale and Aurelio La Corte, "Generation of random variable for modelling VBR multimedia sources", Telecommunication Systems, Vol.9, No.1, pp 1-21, Mar. 1998.
- [13] Jenq-Neng Hwang, "Multimedia Networking: From Theory to Practice", Cambridge University Edition,2009.
- [14] Yongmin Choi, John A. Silvester, and Hyun-chul Kim, "Analysis and Modeling of Multimedia Workload Characteristics in a Multi-service IP Network", IEEE Internet Computing, , Vol.15, No. 2, pp. 35-42, July. 2010.
- [15] Ning Lu and John Bigham, "Utility-based Adaptive Bandwidth Allocation for Multi-Class Traffic in Wireless Networks", Q2SWinet, pp. 136-143, 2005.
- [16] Richard Saucier, "Computer Generation of Statistical Distributions", Army Research Laboratory Notes, 2000.
- [17]Christian Walck, "Hand-book on Statistical Distributions for experimentalists", University of Stockholm Notes, 2007.

Queries?

Overview

Introduction Literature Survey Proposed Work Analysis of Application groups Results Conclusion and Future Works Dissertation References

